Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.776
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642107

RESUMO

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação , Estudos Retrospectivos
2.
J Cancer Res Clin Oncol ; 150(4): 178, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580878

RESUMO

PURPOSE: The prognostic utility of MIB-1 labeling index (LI) in pediatric low-grade glioma (PLGG) has not yet conclusively been described. We assess the correlation of MIB-1 LI and tumor growth velocity (TGV), aiming to contribute to the understanding of clinical implications and the predictive value of MIB-1 LI as an indicator of proliferative activity and progression-free survival (PFS) in PLGG. METHODS: MIB-1 LI of a cohort of 172 nonependymal PLGGs were comprehensively characterized. Correlation to TGV, assessed by sequential MRI-based three-dimensional volumetry, and PFS was analyzed. RESULTS: Mean MIB-1 LI accounted for 2.7% (range: < 1-10) and showed a significant decrease to 1.5% at secondary surgery (p = .0013). A significant difference of MIB-1 LI in different histopathological types and a correlation to tumor volume at diagnosis could be shown. Linear regression analysis showed a correlation between MIB-1 LI and preoperative TGV (R2 = .55, p < .0001), while correlation to TGV remarkably decreased after incomplete resection (R2 = .08, p = .013). Log-rank test showed no association of MIB-1 LI and 5-year PFS after incomplete (MIB-1 LI > 1 vs ≤ 1%: 48 vs 46%, p = .73) and gross-total resection (MIB-1 LI > 1 vs ≤ 1%: 89 vs 95%, p = .75). CONCLUSION: These data confirm a correlation of MIB-1 LI and radiologically detectable TGV in PLGG for the first time. Compared with preoperative TGV, a crucially decreasing correlation of MIB-1 LI and TGV after surgery may result in limited prognostic capability of MIB-1 LI in PLGG.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Antígeno Ki-67 , Prognóstico , Estudos Retrospectivos
3.
Curr Med Sci ; 44(2): 399-405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632142

RESUMO

OBJECTIVE: Complete resection of malignant gliomas is often challenging. Our previous study indicated that intraoperative contrast-enhanced ultrasound (ICEUS) could aid in the detection of residual tumor remnants and the total removal of brain lesions. This study aimed to investigate the survival rates of patients undergoing resection with or without the use of ICEUS and to assess the impact of ICEUS on the prognosis of patients with malignant glioma. METHODS: A total of 64 patients diagnosed with malignant glioma (WHO grade HI and IV) who underwent surgery between 2012 and 2018 were included. Among them, 29 patients received ICEUS. The effects of ICEUS on overall survival (OS) and progression-free survival (PFS) of patients were evaluated. A quantitative analysis was performed to compare ICEUS parameters between gliomas and the surrounding tissues. RESULTS: The ICEUS group showed better survival rates both in OS and PFS than the control group. The univariate analysis revealed that age, pathology and ICEUS were significant prognostic factors for PFS, with only age being a significant prognostic factor for OS. In multivariate analysis, age and ICEUS were significant prognostic factors for both OS and PFS. The quantitative analysis showed that the intensity and transit time of microbubbles reaching the tumors were significantly different from those of microbubbles reaching the surrounding tissue. CONCLUSION: ICEUS facilitates the identification of residual tumors. Age and ICEUS are prognostic factors for malignant glioma surgery, and use of ICEUS offers a better prognosis for patients with malignant glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Ultrassonografia , Prognóstico , Análise de Sobrevida
4.
J Neurosurg ; 140(4): 949-957, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564815

RESUMO

OBJECTIVE: The authors aimed to review the frontal lobe's surgical anatomy, describe their keyhole frontal lobectomy technique, and analyze the surgical results. METHODS: Patients with newly diagnosed frontal gliomas treated using a keyhole approach with supramaximal resection (SMR) from 2016 to 2022 were retrospectively reviewed. Surgeries were performed on patients asleep and awake. A human donor head was dissected to demonstrate the surgical anatomy. Kaplan-Meier curves were used for survival analysis. RESULTS: Of the 790 craniotomies performed during the study period, those in 47 patients met our inclusion criteria. The minimally invasive approach involved four steps: 1) debulking the frontal pole; 2) subpial dissection identifying the sphenoid ridge, olfactory nerve, and optic nerve; 3) medial dissection to expose the falx cerebri and interhemispheric structures; and 4) posterior dissection guided by motor mapping, avoiding crossing the inferior plane defined by the corpus callosum. A fifth step could be added for nondominant lesions by resecting the inferior frontal gyrus. Perioperative complications were recorded in 5 cases (10.6%). The average hospital length of stay was 3.3 days. High-grade gliomas had a median progression-free survival of 14.8 months and overall survival of 23.9 months. CONCLUSIONS: Keyhole approaches enabled successful SMR of frontal gliomas without added risks. Robust anatomical knowledge and meticulous surgical technique are paramount for obtaining successful resections.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Procedimentos Neurocirúrgicos/métodos , Craniotomia/métodos
5.
BMC Med Imaging ; 24(1): 85, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600452

RESUMO

BACKGROUND: 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS: This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS: The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS: Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prótons , Estudos Retrospectivos , 60570 , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Algoritmos , Imageamento por Ressonância Magnética/métodos
6.
Radiologia (Engl Ed) ; 66(2): 114-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614528

RESUMO

OBJECTIVES: To evaluate if the tumour perfusion at the initial MRI scan is a marker of prognosis for survival in patients diagnosed with High Grade Gliomas (HGG). To analyse the risk factors which influence on the mortality from HGG to quantify the overall survival to be expected in patients. PATIENTS AND METHODS: The patients diagnosed with HGG through a MRI scan in a third-level hospital between 2017 and 2019 were selected. Clinical and tumour variables were collected. The survival analysis was used to determine the association between the tumour perfusion and the survival time. The relation between the collected variables and the survival period was assessed through Wald's statistical method, measuring the relationship via Cox's regression model. Finally, the type of relationship that exists between the tumour perfusion and the survival was analysed through the Lineal Regression method.Those statistical analysis were carried out using the software SPSS v.17. RESULTS: 38 patients were included (average age: 61.1 years old). The general average survival period was 20.6 months. A relationship between the tumour perfusion at the MRI scan and the overall survival has been identified, in detail, a group with intratumor values of relative cerebral blood volume (rCBV)>3.0 has shown a significant decline in the average survival period with regard to the average survival period of the group with values <3.0 (14.6 months vs. 22.8 months, p = 0.046). It has also been proved that variables like Karnofsky's scale and the response time since the intervention significantly influence on the survival period. CONCLUSIONS: It has become evident that the tumour perfusion via MRI scan has a prognostic value in the initial analysis of HGG. The average survival period of patients with rCBV less than or equal to 3.0 is significantly higher than those patients whose values are higher, which allows to be more precise with the prognosis of each patient.


Assuntos
Encéfalo , Glioma , Humanos , Pessoa de Meia-Idade , Prognóstico , Perfusão , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética
7.
PLoS One ; 19(4): e0296958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558074

RESUMO

In pre-clinical models of brain gliomas, Relaxation Along a Fictitious Field in second rotating frame (TRAFF2), continues wave T1rho (T1ρcw), adiabatic T1rho (T1ρadiab), and adiabatic T2rho (T2ρadiab) relaxation time mappings have demonstrated potential to non-invasively characterize brain gliomas. Our aim was to evaluate the feasibility and potential of 4 different spin lock methods at 3T to characterize primary brain glioma. 22 patients (26-72 years) with suspected primary glioma. T1ρcw was performed using pulse peak amplitude of 500Hz and pulse train durations of 40 and 80 ms while the corresponding values for T1ρadiab, T2ρadiab, TRAFF2 were 500/500/500Hz and 48 and 96, 64 and 112, 45 and 90 ms, respectively. The parametric maps were calculated using a monoexponential model. Molecular profiles were evaluated from tissue specimens obtained during the resection. The lesion regions-of-interest were segmented from high intensity FLAIR using automatic segmentation with manual refinement. Statistical descriptors from the voxel intensity values inside each lesion and radiomic features (Pyrad MRC package) were calculated. From extracted radiomics, mRMRe R package version 2.1.0 was used to select 3 features in each modality for statistical comparisons. Of the 22 patients, 10 were found to have IDH-mutant gliomas and of those 5 patients had 1p/19q codeletion group comparisons. Following correction for effects of age and gender, at least one statistical descriptor was able to differentiate between IDH and 1p/19q codeletion status for all the parametric maps. In the radiomic analysis, corner-edge detector features with Harris-Stephens filtered signal showed significant group differences in IDH and 1p/19q codeletion groups. Spin lock imaging at 3T of human glioma was feasible and various qualitative parameters derived from the parametric maps were found to have potential to differentiate IDH and 1p19q codeletion status. Future larger prospective clinical trials are warranted to evaluate these methods further.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Estudos de Viabilidade , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Mutação , Glioma/diagnóstico por imagem , Glioma/patologia , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
8.
Nano Lett ; 24(15): 4562-4570, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591327

RESUMO

Heteroions doped Ag2S nanocrystals (NCs) exhibiting enhanced near-infrared-II emission (NIR-II) hold great promise for glioma diagnosis. Nevertheless, current doped Ag2S NCs paradoxically improved properties via toxic dopants, and the blood-brain barrier (BBB) constitutes another challenge for orthotopic glioma imaging. Thus, it is urgent to develop biofriendly high-bright Ag2S NCs with active BBB-penetration for glioma-targeted imaging. Herein, bismuth (Bi) was screened to obtain Bi-Ag2S NCs with high absolute PLQY (∼13.3%) for its matched ionic-radius (1.03 Å) with Ag+. The Bi-Ag2S NCs exhibited a higher luminance and deeper penetration (5-6 mm) than clinical indocyanine green. Upon conjugation with lactoferrin, the NCs acquired BBB-crossing and glioma-targeting abilities. Time-dependent NIR-II-imaging demonstrated their effective accumulation in glioma with skull/scalp intact after intravenous injection. Moreover, the toxic-metal-free NCs exhibited negligible toxicity and great biocompatibility. The success of leveraging the ion-radii comparison may unlock the full potential of doped-Ag2S NCs in bioimaging and inspire the development of various doped NIR-II NCs.


Assuntos
Glioma , Nanopartículas Metálicas , Humanos , Bismuto , Rádio (Anatomia) , Nanopartículas Metálicas/química , Crânio , Glioma/diagnóstico por imagem
9.
Yonsei Med J ; 65(5): 283-292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653567

RESUMO

PURPOSE: Lower-grade gliomas of histologic grades 2 and 3 follow heterogenous clinical outcomes, which necessitates risk stratification. This study aimed to evaluate whether diffusion-weighted and perfusion-weighted MRI radiomics allow overall survival (OS) prediction in patients with lower-grade gliomas and investigate its prognostic value. MATERIALS AND METHODS: In this retrospective study, radiomic features were extracted from apparent diffusion coefficient, relative cerebral blood volume map, and Ktrans map in patients with pathologically confirmed lower-grade gliomas (January 2012-February 2019). The radiomics risk score (RRS) calculated from selected features constituted a radiomics model. Multivariable Cox regression analysis, including clinical features and RRS, was performed. The models' integrated area under the receiver operating characteristic curves (iAUCs) were compared. The radiomics model combined with clinical features was presented as a nomogram. RESULTS: The study included 129 patients (median age, 44 years; interquartile range, 37-57 years; 63 female): 90 patients for training set and 39 patients for test set. The RRS was an independent risk factor for OS with a hazard ratio of 6.01. The combined clinical and radiomics model achieved superior performance for OS prediction compared to the clinical model in both training (iAUC, 0.82 vs. 0.72, p=0.002) and test sets (0.88 vs. 0.76, p=0.04). The radiomics nomogram combined with clinical features exhibited good agreement between the actual and predicted OS with C-index of 0.83 and 0.87 in the training and test sets, respectively. CONCLUSION: Adding diffusion- and perfusion-weighted MRI radiomics to clinical features improved survival prediction in lower-grade glioma.


Assuntos
Neoplasias Encefálicas , Imagem de Difusão por Ressonância Magnética , Glioma , Humanos , Glioma/diagnóstico por imagem , Glioma/mortalidade , Glioma/patologia , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Prognóstico , Curva ROC , Nomogramas , Modelos de Riscos Proporcionais , Gradação de Tumores , 60570
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 447-454, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645864

RESUMO

Objective: The fully automatic segmentation of glioma and its subregions is fundamental for computer-aided clinical diagnosis of tumors. In the segmentation process of brain magnetic resonance imaging (MRI), convolutional neural networks with small convolutional kernels can only capture local features and are ineffective at integrating global features, which narrows the receptive field and leads to insufficient segmentation accuracy. This study aims to use dilated convolution to address the problem of inadequate global feature extraction in 3D-UNet. Methods: 1) Algorithm construction: A 3D-UNet model with three pathways for more global contextual feature extraction, or 3DGE-UNet, was proposed in the paper. By using publicly available datasets from the Brain Tumor Segmentation Challenge (BraTS) of 2019 (335 patient cases), a global contextual feature extraction (GE) module was designed. This module was integrated at the first, second, and third skip connections of the 3D UNet network. The module was utilized to fully extract global features at different scales from the images. The global features thus extracted were then overlaid with the upsampled feature maps to expand the model's receptive field and achieve deep fusion of features at different scales, thereby facilitating end-to-end automatic segmentation of brain tumors. 2) Algorithm validation: The image data were sourced from the BraTs 2019 dataset, which included the preoperative MRI images of 335 patients across four modalities (T1, T1ce, T2, and FLAIR) and a tumor image with annotations made by physicians. The dataset was divided into the training, the validation, and the testing sets at an 8∶1∶1 ratio. Physician-labelled tumor images were used as the gold standard. Then, the algorithm's segmentation performance on the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) was evaluated in the test set using the Dice coefficient (for overall effectiveness evaluation), sensitivity (detection rate of lesion areas), and 95% Hausdorff distance (segmentation accuracy of tumor boundaries). The performance was tested using both the 3D-UNet model without the GE module and the 3DGE-UNet model with the GE module to internally validate the effectiveness of the GE module setup. Additionally, the performance indicators were evaluated using the 3DGE-UNet model, ResUNet, UNet++, nnUNet, and UNETR, and the convergence of these five algorithm models was compared to externally validate the effectiveness of the 3DGE-UNet model. Results: 1) In internal validation, the enhanced 3DGE-UNet model achieved Dice mean values of 91.47%, 87.14%, and 83.35% for segmenting the WT, TC, and ET regions in the test set, respectively, producing the optimal values for comprehensive evaluation. These scores were superior to the corresponding scores of the traditional 3D-UNet model, which were 89.79%, 85.13%, and 80.90%, indicating a significant improvement in segmentation accuracy across all three regions (P<0.05). Compared with the 3D-UNet model, the 3DGE-UNet model demonstrated higher sensitivity for ET (86.46% vs. 80.77%) (P<0.05) , demonstrating better performance in the detection of all the lesion areas. When dealing with lesion areas, the 3DGE-UNet model tended to correctly identify and capture the positive areas in a more comprehensive way, thereby effectively reducing the likelihood of missed diagnoses. The 3DGE-UNet model also exhibited exceptional performance in segmenting the edges of WT, producing a mean 95% Hausdorff distance superior to that of the 3D-UNet model (8.17 mm vs. 13.61 mm, P<0.05). However, its performance for TC (8.73 mm vs. 7.47 mm) and ET (6.21 mm vs. 5.45 mm) was similar to that of the 3D-UNet model. 2) In the external validation, the other four algorithms outperformed the 3DGE-UNet model only in the mean Dice for TC (87.25%), the mean sensitivity for WT (94.59%), the mean sensitivity for TC (86.98%), and the mean 95% Hausdorff distance for ET (5.37 mm). Nonetheless, these differences were not statistically significant (P>0.05). The 3DGE-UNet model demonstrated rapid convergence during the training phase, outpacing the other external models. Conclusion: The 3DGE-UNet model can effectively extract and fuse feature information on different scales, improving the accuracy of brain tumor segmentation.


Assuntos
Algoritmos , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento Tridimensional/métodos
11.
Med Eng Phys ; 126: 104139, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621837

RESUMO

Microrecurrent glioma is a common neurological tumor, and the key to its surgical treatment is to accurately evaluate the size, location and degree of recurrence of the lesion. The purpose of this study was to explore the surgical treatment of microrecurrent glioma based on MR Imaging, and to provide accurate and reliable basis for clinical decision-making. Before surgery, detailed MR Imaging tests were performed for each patient to accurately locate and evaluate the characteristics of the lesions. Multimodal imaging examination were arranged to accurate the pre-operation diagnosis. Neuro-navigation is necessary for the operation design and tumor confirmation. Function monitor and intraoperation MR were prepared when necessary.Mini was defined by the size, location and symptoms. In all 5 cases requiring reoperation, total resection was achieved. No systemic and local complications occurred. No permeant neurological dysfunction remained. The average stay time after the operation is days. All patients survived in the recent follow-up. Reoperation of mini recurrent glioma is a good treatment choice. We made little injury to patients, which wouldn't affect their conditions and next therapies. Through MR Imaging, the diagnosis and location of microrecurrent glioma, as well as the relationship with surrounding tissues and the degree of infiltration, provide important information for surgeons to evaluate the resectable lesion. By combining MR And functional imaging results, the blood supply and functional area of the lesion can be monitored in real time during surgery, thereby reducing surgical risk and maximizing the protection of surrounding healthy tissue.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética
12.
Int J Nanomedicine ; 19: 3367-3386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617794

RESUMO

Purpose: Hypoxia is often associated with glioma chemoresistance, and alleviating hypoxia is also crucial for improving treatment efficacy. However, although there are already some methods that can improve efficacy by alleviating hypoxia, real-time monitoring that can truly achieve hypoxia relief and efficacy feedback still needs to be explored. Methods: AQ4N/Gd@PDA-FA nanoparticles (AGPF NPs) were synthesized using a one-pot method and were characterized. The effects of AGPF NPs on cell viability, cellular uptake, and apoptosis were investigated using the U87 cell line. Moreover, the effectiveness of AGPF NPs in alleviating hypoxia was explored in tumor-bearing mice through photoacoustic imaging. In addition, the diagnosis and treatment effect of AGPF NPs were evaluated by magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) on orthotopic glioma mice respectively. Results: In vitro experiments showed that AGPF NPs had good dispersion, stability, and controlled release. AGPF NPs were internalized by cells through endocytosis, and could significantly reduce the survival rate of U87 cells and increase apoptosis under irradiation. In addition, we monitored blood oxygen saturation at the tumor site in real-time through photoacoustic imaging (PAI), and the results showed that synergistic mild-photothermal therapy/chemotherapy effectively alleviated tumor hypoxia. Finally, in vivo anti-tumor experiments have shown that synergistic therapy can effectively alleviate hypoxia and inhibit the growth of orthotopic gliomas. Conclusion: This work not only provides an effective means for real-time monitoring of the dynamic feedback between tumor hypoxia relief and therapeutic efficacy, but also offers a potential approach for the clinical treatment of gliomas.


Assuntos
Antraquinonas , Glioma , Terapia Fototérmica , Animais , Camundongos , Glioma/diagnóstico por imagem , Glioma/terapia , Ácido Fólico , Hipóxia
13.
Acta Neurobiol Exp (Wars) ; 84(1): 43-50, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587325

RESUMO

This study focused on the association of LINC01270 and computed tomography (CT) signs with glioma development, to evaluate their potential in the early detection of glioma. Serum LINC01270 was evaluated in glioma patients and healthy individuals using PCR. The involvement of LINC01270 in glioma onset and development was evaluated by ROC and chi­square test. The association of LINC01270 with the CT signs and their combined effects in the diagnosis in glioma were also estimated. Serum LINC01270 was significantly elevated in glioma patients, which was closely associated with patients' advanced WHO grades and lower KPS. Both LINC01270 upregulation and CT findings showed significant potential in diagnosing glioma, and LINC01270 correlated significantly with the invasion risk and metastasis indicated on CT. The combination of LINC01270 expression and CT findings significantly improved the sensitivity and specificity of glioma diagnosis. Upregulated LINC01270 in glioma is associated with malignant and severe disease development and has significant diagnostic value. Combined detection of LINC01270 and CT findings could improve the diagnostic efficacy in glioma cases, thus optimizing clinical diagnosis.


Assuntos
Glioma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Glioma/diagnóstico por imagem , Glioma/genética , Tomografia Computadorizada por Raios X , Regulação para Cima
14.
Neurosurg Rev ; 47(1): 120, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498065

RESUMO

PURPOSE: Here, we conducted a meta-analysis to explore the use of intraoperative ultrasound (iUS)-guided resection in patients diagnosed with high-grade glioma (HGG) or glioblastoma (GBM). Our aim was to determine whether iUS improves clinical outcomes compared to conventional neuronavigation (CNN). METHODS: Databases were searched until April 21, 2023 for randomized controlled trials (RCTs) and observational cohort studies that compared surgical outcomes for patients with HGG or GBM with the use of either iUS in addition to standard approach or CNN. The primary outcome was overall survival (OS). Secondary outcomes include volumetric extent of resection (EOR), gross total resection (GTR), and progression-free survival (PFS). Outcomes were analyzed by determining pooled relative risk ratios (RR), mean difference (MD), and standardized mean difference (SMD) using random-effects model. RESULTS: Of the initial 867 articles, only 7 articles specifically met the inclusion criteria (1 RCT and 6 retrospective cohorts). The analysis included 732 patients. Compared to CNN, the use of iUS was associated with higher OS (SMD = 0.26,95%CI=[0.12,0.39]) and GTR (RR = 2.02; 95% CI=[1.31,3.1]) for both HGG and GBM. There was no significant difference in PFS or EOR. CONCLUSION: The use of iUS in surgical resections for HGG and GBM can improve OS and GTR compared to CNN, but it did not affect PFS. These results suggest that iUS reduces mortality associated with HGG and GBM but not the risk of recurrence. These results can provide valuable cost-effective interventions for neurosurgeons in HGG and GBM surgery.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Bases de Dados Factuais , Neuronavegação , Neurocirurgiões
15.
Acta Neurochir (Wien) ; 166(1): 154, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538929

RESUMO

BACKGROUND: In recent years, molecular findings on spinal gliomas have become increasingly important. This study aimed to investigate the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in the diagnosis of spinal glioma. METHODS: This study included patients diagnosed with spinal cord glioma who underwent 18F-FDG-PET examination at the Department of Neurosurgery, Nagoya University Hospital between January 2016 and November 2023. The gliomas were divided into two groups, high-grade and low-grade, based on pathological and molecular studies. The maximum standardized uptake values (SUVmax) of the tumors were quantified and subsequently represented using receiver operating characteristic (ROC) curves. RESULTS: Eighteen participants were included in this study. Of the participants, seven had high-grade glioma with an SUVmax of 6.76 ± 0.72, and eleven had low-grade glioma with an SUVmax of 4.02 ± 1.78, and a statistically significant difference between the two groups. The ROC curve delineated an SUVmax cutoff value of 5.650, with an area under the curve (AUC) of approximately 0.909. Based on the cutoff value, the results of the diagnostic performance rendered a sensitivity and negative predictive value of 1.0, whereas the specificity and positive predictive value were 0.909 and 0.875, respectively. CONCLUSIONS: The present study shows that 18F-FDG-PET exhibits a markedly sensitive and negative predictive value in the assessment of spinal gliomas. Additionally, these findings have potential implications for the qualitative assessment of spinal gliomas using 18F-FDG-PET/CT. This imaging modality may be useful for making timely treatment decisions in situations where a detailed diagnosis by molecular analysis is not possible.


Assuntos
Fluordesoxiglucose F18 , Glioma , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Glioma/diagnóstico por imagem , Glioma/patologia , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos
16.
J Neurooncol ; 167(1): 201-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427132

RESUMO

INTRODUCTION: Diffuse hemispheric glioma, H3 G34-mutant (DHGs), is a newly categorized tumor in pediatric-type diffuse high-grade gliomas, World Health Organization grade 4, with a poor prognosis. Although prognostic factors associated with genetic abnormalities have been reported, few reports have examined the clinical presentation of DHGs, especially from the viewpoint of imaging findings. In this study, we investigated the relationship between clinical factors, including imaging findings, and prognosis in patients with DHGs. METHODS: We searched Medline through the PubMed database using two search terms: "G34" and "glioma", between 1 April 2012 and 1 July 2023. We retrieved articles that described imaging findings and overall survival (OS), and added one DHG case from our institution. We defined midline invasion (MI) as invasion to the contralateral cerebrum, brainstem, corpus callosum, thalamus, and basal ganglia on magnetic resonance imaging. The primary outcome was 12-month survival, estimated using Kaplan-Meier curves and logistic regression. RESULTS: A total of 96 patients were included in this study. The median age was 22 years, and the proportion of male patients was 48.4%. Lesions were most frequently located in the frontal lobe (52.6%). MI was positive in 39.6% of all patients. The median OS was 14.4 months. Univariate logistic regression analysis revealed that OS was significantly worse in the MI-positive group compared with the MI-negative group. Multivariate logistic regression analysis revealed that MI was an independent prognostic factor in DHGs. CONCLUSIONS: In this study, MI-positive cases had a worse prognosis compared with MI-negative cases. PREVIOUS PRESENTATIONS: No portion of this study has been presented or published previously.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Masculino , Criança , Adulto Jovem , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Prognóstico
17.
Comput Methods Programs Biomed ; 248: 108116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518408

RESUMO

BACKGROUND AND OBJECTIVE: Mutations in isocitrate dehydrogenase 1 (IDH1) play a crucial role in the prognosis, diagnosis, and treatment of gliomas. However, current methods for determining its mutation status, such as immunohistochemistry and gene sequencing, are difficult to implement widely in routine clinical diagnosis. Recent studies have shown that using deep learning methods based on pathological images of glioma can predict the mutation status of the IDH1 gene. However, our research focuses on utilizing multi-scale information in pathological images to improve the accuracy of predicting IDH1 gene mutations, thereby providing an accurate and cost-effective prediction method for routine clinical diagnosis. METHODS: In this paper, we propose a multi-scale fusion gene identification network (MultiGeneNet). The network first uses two feature extractors to obtain feature maps at different scale images, and then by employing a bilinear pooling layer based on Hadamard product to realize the fusion of multi-scale features. Through fully exploiting the complementarity among features at different scales, we are able to obtain a more comprehensive and rich representation of multi-scale features. RESULTS: Based on the Hematoxylin and Eosin stained pathological section dataset of 296 patients, our method achieved an accuracy of 83.575 % and an AUC of 0.886, thus significantly outperforming other single-scale methods. CONCLUSIONS: Our method can be deployed in medical aid systems at very low cost, serving as a diagnostic or prognostic tool for glioma patients in medically underserved areas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/genética , Mutação , Prognóstico , Isocitrato Desidrogenase/genética
18.
Math Biosci Eng ; 21(3): 4328-4350, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38549330

RESUMO

In the realm of medical imaging, the precise segmentation and classification of gliomas represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 dataset as a standard benchmark, this study delves into the potential of advanced deep learning models for addressing these challenges. We propose a novel approach that integrates a customized U-Net for segmentation and VGG-16 for classification. The U-Net, with its tailored encoder-decoder pathways, accurately identifies glioma regions, thus improving tumor localization. The fine-tuned VGG-16, featuring a customized output layer, precisely differentiates between low-grade and high-grade gliomas. To ensure consistency in data pre-processing, a standardized methodology involving gamma correction, data augmentation, and normalization is introduced. This novel integration surpasses existing methods, offering significantly improved glioma diagnosis, validated by high segmentation dice scores (WT: 0.96, TC: 0.92, ET: 0.89), and a remarkable overall classification accuracy of 97.89%. The experimental findings underscore the potential of integrating deep learning-based methodologies for tumor segmentation and classification in enhancing glioma diagnosis and formulating subsequent treatment strategies.


Assuntos
Glioma , Imageamento por Ressonância Magnética , Humanos , Glioma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
19.
AJNR Am J Neuroradiol ; 45(4): 453-460, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453410

RESUMO

BACKGROUND AND PURPOSE: MR perfusion has shown value in the evaluation of posttreatment high-grade gliomas, but few studies have shown its impact on the consistency and confidence of neuroradiologists' interpretation in routine clinical practice. We evaluated the impact of adding MR perfusion metrics to conventional contrast-enhanced MR imaging in posttreatment high-grade glioma surveillance imaging. MATERIALS AND METHODS: This retrospective study included 45 adults with high-grade gliomas who had posttreatment perfusion MR imaging. Four neuroradiologists assigned Brain Tumor Reporting and Data System scores for each examination on the basis of the interpretation of contrast-enhanced MR imaging and then after the addition of arterial spin-labeling-CBF, DSC-relative CBV, and DSC-fractional tumor burden. Interrater agreement and rater agreement with a multidisciplinary consensus group were assessed with κ statistics. Raters used a 5-point Likert scale to report confidence scores. The frequency of clinically meaningful score changes resulting from the addition of each perfusion metric was determined. RESULTS: Interrater agreement was moderate for contrast-enhanced MR imaging alone (κ = 0.63) and higher with perfusion metrics (arterial spin-labeling-CBF, κ = 0.67; DSC-relative CBV, κ = 0.66; DSC-fractional tumor burden, κ = 0.70). Agreement between raters and consensus was highest with DSC-fractional tumor burden (κ = 0.66-0.80). Confidence scores were highest with DSC-fractional tumor burden. Across all raters, the addition of perfusion resulted in clinically meaningful interpretation changes in 2%-20% of patients compared with contrast-enhanced MR imaging alone. CONCLUSIONS: Adding perfusion to contrast-enhanced MR imaging improved interrater agreement, rater agreement with consensus, and rater confidence in the interpretation of posttreatment high-grade glioma MR imaging, with the highest agreement and confidence scores seen with DSC-fractional tumor burden. Perfusion MR imaging also resulted in interpretation changes that could change therapeutic management in up to 20% of patients.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Estudos Retrospectivos , Marcadores de Spin , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Perfusão , Meios de Contraste , Circulação Cerebrovascular
20.
Neuroradiology ; 66(5): 785-796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478062

RESUMO

PURPOSE: This study aimed to investigate the diagnostic performance of diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in identifying aberrations in the corticospinal tract (CST), whilst elucidating the relationship between abnormalities of CST and patients' motor function. METHODS: Altogether 21 patients with WHO grade II or grade IV glioma were enrolled and divided into Group 1 and Group 2, according to the presence or absence of preoperative paralysis. DKI and DTI metrics were generated and projected onto the CST. Histograms of the CST along x, y, and z axes were developed based on DKI and DTI metrics, and compared subsequently to determine regions of aberrations on the fibers. The receiver operating characteristic curve was performed to investigate the diagnostic efficacy of DKI and DTI metrics. RESULTS: In Group 1, a significantly lower fractional anisotropy, radial kurtosis and mean kurtosis, and a higher mean diffusivity were found in the ipsilateral CST as compared to the contralateral CST. Significantly higher relative axial diffusivity, relative radial diffusivity, and relative mean diffusivity (rMD) were found in Group 1, as compared to Group 2. The relative volume of ipsilateral CST abnormalities higher than the maximum value of mean kurtosis combined with rMD exhibited the best diagnostic performance in distinguishing dysfunction of CST with an AUC of 0.93. CONCLUSION: DKI is sensitive in detecting subtle changes of CST distal from the tumor. The combination of DKI and DTI is feasible for evaluating the impairment of the CST.


Assuntos
Imagem de Tensor de Difusão , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/patologia , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...